
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

vlayer

Veridise Inc.
May 12, 2025

▶ Prepared For:

vlayer labs
https://www.vlayer.xyz/

▶ Prepared By:

Jon Stephens
Tyler Diamond

▶ Contact Us:

contact@veridise.com

▶ Version History:

May 12, 2025 V3
Apr 29, 2025 V2
Mar 26, 2025 V1
Mar 26, 2025 Initial Draft

© 2025 Veridise Inc. All Rights Reserved.

https://www.vlayer.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 4

3 Security Assessment Goals and Scope 5
3.1 Security Assessment Goals . 5
3.2 Security Assessment Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Trust Model 8
4.1 Operational Assumptions. 8
4.2 Privileged Roles. 8

5 Vulnerability Report 10
5.1 Detailed Description of Issues . 11

5.1.1 V-VLYR-VUL-001: Missing EVM environment validation allows proof
spoofing . 11

5.1.2 V-VLYR-VUL-002: Missing DNS record validation allows email forgery . 13
5.1.3 V-VLYR-VUL-003: Inconsistent dependencies allow injection of malicious

email bodies . 15
5.1.4 V-VLYR-VUL-004: SetBlock and SetChain apply to all following transactions 17
5.1.5 V-VLYR-VUL-005: Time-travel forward admits arbitrary state 19
5.1.6 V-VLYR-VUL-006: Information not included in DKIM signature can be

returned . 21
5.1.7 V-VLYR-VUL-007: Inconsistent metadata access allows access to unsigned

information . 22
5.1.8 V-VLYR-VUL-008: Request transcript redaction can change path and

headers . 23
5.1.9 V-VLYR-VUL-009: Response transcript redaction may silently overwrite

data . 25
5.1.10 V-VLYR-VUL-010: Entries with an empty key incorrectly made as branch

nodes . 27
5.1.11 V-VLYR-VUL-011: Precompile addresses are not unique 28
5.1.12 V-VLYR-VUL-012: Email proof validation can be passed during time travel 29
5.1.13 V-VLYR-VUL-013: Incorrect From email address can be extracted 31
5.1.14 V-VLYR-VUL-014: Email address validation does not match specification 33
5.1.15 V-VLYR-VUL-015: Delegate calls use incorrect storage 35
5.1.16 V-VLYR-VUL-016: REVM block number not set for ForgeBlock 36
5.1.17 V-VLYR-VUL-017: Sequencer output silently overwritten 37
5.1.18 V-VLYR-VUL-018: Travel block silently truncated 38
5.1.19 V-VLYR-VUL-019: Potential for man in the middle attack 39

Veridise Audit Report: vlayer © 2025 Veridise Inc.

5.1.20 V-VLYR-VUL-020: Values with primary redaction character may be par-
tially redacted . 40

5.1.21 V-VLYR-VUL-021: Primary redaction characters may exist in values . . . 42
5.1.22 V-VLYR-VUL-022: Two step ownership is preferred 43
5.1.23 V-VLYR-VUL-023: Lack of SpecID may cause confusion to users 44
5.1.24 V-VLYR-VUL-024: AnchorStateRegistry reads from a fixed slot 45
5.1.25 V-VLYR-VUL-025: Unexpected JSON path syntax for nested arrays . . . 46
5.1.26 V-VLYR-VUL-026: Database seeding can cause inconsistencies 47
5.1.27 V-VLYR-VUL-027: General smart contract recommendations 48
5.1.28 V-VLYR-VUL-028: Domain owners can prove arbitrary emails 50
5.1.29 V-VLYR-VUL-029: Proofs may be replayed or frontrun 51
5.1.30 V-VLYR-VUL-030: General Rust recommendations 52

Glossary 54

Veridise Audit Report: vlayer © 2025 Veridise Inc.

1 Executive Summary

From Feb. 10, 2025 to Mar. 21, 2025, vlayer labs engaged Veridise to conduct a security assessment
of vlayer. Veridise conducted the assessment over 12 person-weeks, with 2 security analysts
reviewing the project over 6 weeks on commit a763614.

The review strategy involved a tool-assisted analysis of the program source code performed by
Veridise security analysts as well as thorough code review.

Project Summary. vlayer enables users to write smart contracts that can take advantage of
additional functionality that is unavailable to a typical contract, including the ability to time
travel in the current chain, teleport to a new chain, query the web and query emails (see below).
This additional functionality is provided via a custom Risc Zero zkVM application that executes
a version of the EVM, with the following additional precompiles.

▶ Time travel: Users can prove arbitrary state over a number of blocks that occurred in the
past.

▶ Teleport: Users can prove state that exists on another chain. Specifically, this is used for
reading the state of OP-stack chains from Ethereum.

▶ Web proof : Users can verify the transcript of a web connection that occurred which utilized
the TLSNotary ‗.

▶ Email proof : Users can verify the legitimacy of a DKIM signed email.
▶ JSON and Regex: Users can parse JSON and regular expressions on a given string.

This allows a user to deploy a prover contract that can interact with arbitrary state on the
blockchain while making use of the new precompiles. This execution then produces a ZK proof
that can be checked with an on-chain verifier contract to (1) verify the execution of the prover
contract and (2) update information on-chain in response to the information provided in the ZK
proof.

Code Assessment. The vlayer developers provided the source code of the vlayer contracts
for the code review. The source code appears to be mostly original code written by the vlayer
developers. The call component of the project, which provides the functionality of proving
the legitimacy of state read by the EVM, appears to take inspiration from Steel†. The project
contains some documentation in the form of READMEs and documentation comments on
functions and storage variables. Additionally, vlayer provides a book that documents the usage
and architecture of their components‡. To facilitate the Veridise security analysts understanding
of the code, the vlayer developers provided access to their internal documentation book, which
provided more extensive design decisions than the public counterpart. Although the analysts
attempted to understand the intended behavior of the code from the source code and books,
they noted that many of the components provided no source code documentation. The source

‗ This project utilizes a trusted notary server to attest to the legitimacy of a TLS connection’s data https://tlsnotary.
org/

† https://github.com/RiscZero/RiscZero-ethereum/tree/main/crates/steel
‡ https://www.book.vlayer.xyz

Veridise Audit Report: vlayer © 2025 Veridise Inc.

https://tlsnotary.org/
https://tlsnotary.org/
https://github.com/Risc Zero/Risc Zero-ethereum/tree/main/crates/steel
https://www.book.vlayer.xyz

2 Contents

code contained a test suite, which the Veridise security analysts noted provided positive tests
and some negative tests for most components.

Summary of Issues Detected. The security assessment uncovered 30 issues, 9 of which
are assessed to be of high or critical severity by the Veridise analysts. Specifically, a user can
prove arbitrary state when using a teleport (V-VLYR-VUL-001), email proofs may be forged
to prove an arbitrary email (V-VLYR-VUL-002) and unvalidated email bodies can be injected
into email proofs (V-VLYR-VUL-003). The Veridise analysts also identified 6 medium-severity
issues, including V-VLYR-VUL-012, which details how a user can bypass the smart contract
safeguards surrounding email proofs. Additionally, 8 low-severity issues and 7 warnings were
found. Among the 30 issues, 20 issues have been acknowledged by vlayer labs, 10 issues are still
unresolved. It should be noted that vlayer labs resolved all critical, high and medium issues so
only issues classified as low and warning remain.

Recommendations. After conducting the assessment of the protocol, the security analysts
had a few suggestions to improve vlayer.

Documentation and testing. Some modules, such as the mpt module, contain extensive documen-
tation along with diagrams. However, many other parts of the code, especially in the Rust code,
provide no documentation. For example, many files in the engine crate have no documentation
on them. This is especially concerning for the verifier components of teleport and time_travel

given their importance in the project.

Dependency inner-workings. Much of vlayer’s core functionality makes use of 3rd party de-
pendencies to perform key operations such as reading emails, validating DKIM signatures,
reading HTTP requests and validating web proofs. During this audit, several severe issues
were identified related to unexpected interactions between dependencies (V-VLYR-VUL-003,
V-VLYR-VUL-006, V-VLYR-VUL-008, V-VLYR-VUL-009). We would strongly recommend that
the developers investigate the dependencies to understand what guarantees they provide.
Additionally, the developers should ensure that any information returned to the user is proven
or signed.

Privacy implications documentation. The vlayer developers have indicated they expect many users
will opt into using prover networks which will generate zero-knowledge proofs for them, as
opposed to proving locally. This will require potentially sensitive input data to be transmitted
to said provers, and there should be extensive documentation on what trade-offs are made
regarding a user’s privacy when using these networks.

Document best practices. Several important security decisions are left to those that use the vlayer
infrastructure as mentioned in V-VLYR-VUL-029. To ensure that users are aware of these security
recommendations, we would recommend including a best practice page with information
about:

1. Frontrunning: Frontunning could allow a proof to be verified by anyone once it enters the
mempool. This could allow the frontrunner to perform an action or gain a reward rather
than the individual who first submitted the transaction.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

3 Contents

2. Proof replay: Replay attacks allow individuals to verify the same proof more than once.
Oftentimes this is undesired behavior and nullifiers are used to ensure a proof may only
be verified once. Also note that the seal (or a hash of the seal) should not be used as a
nullifier as Groth16 proofs are malleable.

3. Signatories/Notaries: Applications that make use of web proofs or email proofs must
designate trusted third parties that act as signatories. These signatories must be selected
carefully as a compromised or malicious signatory could verify arbitrary web proofs
or email proofs. Additionally, applications should ensure that these signatories are
practicing proper operational security regarding the secure storage of keys. They should
also frequently rotate their keys and, if possible, use a threshold signature scheme so that
a single compromise does not compromise the security of the application.

4. Domain-Specific security assumptions: Security assumptions specific to certain features of
the protocol such as V-VLYR-VUL-028and V-VLYR-VUL-026.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

2 Project Dashboard

Table 2.1: Application Summary.

Name Version Type Platform
vlayer a763614 Rust Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Feb. 10 – Mar. 21, 2025 Manual & Tools 2 12 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Acknowledged Fixed
Critical-Severity Issues 3 3 3
High-Severity Issues 6 6 6
Medium-Severity Issues 6 6 6
Low-Severity Issues 8 4 3
Warning-Severity Issues 7 1 0
Informational-Severity Issues 0 0 0
TOTAL 30 20 18

Table 2.4: Category Breakdown.

Name Number
Data Validation 14
Logic Error 9
Maintainability 3
Access Control 2
Authentication 1
Frontrunning 1

Veridise Audit Report: vlayer © 2025 Veridise Inc.

3 Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of vlayer’s smart contracts and
Rust code. During the assessment, the security analysts aimed to answer questions such as:

▶ Can non-canonical blocks be used during execution?
▶ Are signature operations correctly validated?
▶ What privacy protections are in place for users?
▶ Are the state roots of blocks correctly validated in the zkVM?
▶ Are the storage slots of accounts validated against the executing enviornment’s state root?
▶ Do the EVM extensions allow invalid execution?
▶ Can unverified data be returned from the web_proof and email_proof programs?
▶ Do all inputs to the zkVM programs influence their execution or outputs?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis & testing tools. In
particular, the security assessment was conducted with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, security analysts leveraged
Veridise’s custom smart contract analysis tool Vanguard, as well as the open-source tool
Slither. These tools are designed to find instances of common smart contract vulnerabilities,
such as reentrancy and uninitialized variables.

Scope. The scope of this security assessment is limited to the Solidity contracts in the contracts

/vlayer/src folder and the Rust files in the rust/ folder of the source code provided by the
vlayer developers with the following exceptions:

▶ contracts/vlayer/src

• ImageID.sol

• proof_verifier/FakeProofVerifier.sol

• proof_verifier/ProofVerifierFactory.sol

• proof_verifier/ProofVerifierRouter.sol

▶ rust/

• Various test files
• cli/

• common/cli.rs

• common/rpc.rs

• trace.rs

• provider/

Veridise Audit Report: vlayer © 2025 Veridise Inc.

6 Contents

• range/

• server_utils/

• services/call/host/

• services/call/server/

• services/call/server_lib/

• services/chain/client/

• services/chain/db/

• services/chain/host/

• services/chain/mock_server/

• services/chain/server/

• services/chain/server_lib/

• services/chain/worker/

• services/dns/

• verifiable_dns/dns_over_https/

• verifiable_dns/verifiable_dns/

• version

Note that most of the host code, which communicates the inputs of the actual constrained
execution of the zkVM, is out of scope.

Methodology. Veridise security analysts inspected the provided tests, read the vlayer documen-
tation and provided examples. They then began a review of the code assisted by both static
analyzers and testing. Additionally, proof of concepts were developed for issues which required
validation.

During the security assessment, the Veridise security analysts were in regular asynchronous
contact with vlayer developers to ask questions about the code. Additionally, security reviews
for the Steel codebase were studied during the review of the call and mpt modules due to their
similar architecture.

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

The likelihood of a vulnerability is evaluated according to the Table 3.2.

The impact of a vulnerability is evaluated according to the Table 3.3:

© 2025 Veridise Inc. Veridise Audit Report: vlayer

7 Contents

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2025 Veridise Inc. Veridise Audit Report: vlayer

4 Trust Model

4.1 Operational Assumptions.

In addition to assuming that any out-of-scope components behave correctly, Veridise analysts
assumed the following properties held when modeling security for vlayer.

▶ The vlayer labs verifiable_dns administrators will only sign valid DNS records.
▶ The vlayer labs TLSNotary Notary server will act honestly.
▶ The vlayer labs Repository owners will only add legitimate DNS signing keys, ImageIDs

and Notary keys.

4.2 Privileged Roles.

Roles. This section describes in detail the specific roles present in the system, and the actions
each role is trusted to perform. The roles are grouped based on two characteristics: privilege-
level and time-sensititivy. Highly-privileged roles may have a critical impact on the protocol
if compromised. Time-sensitive emergency roles may be required to perform actions quickly
based on real-time monitoring, while non-emergency roles perform actions like deployments and
configurations which can be planned several hours or days in advance.

During the review, Veridise analysts assume that the role operators perform their responsiblities
as intended. Protocol exploits relying on the below roles acting outside of their privileged scope
are considered outside of scope.

▶ Highly-privileged, emergency roles:

• The Repository admin can change the owner of the Repository at any point, with no
time delay.

• The Repository owner can remove/rotate keys if a compromise were to occur.

▶ Highly-privileged, non-emergency roles:

• verifiable_dns approved public keys can associate a DKIM public key with any
domain they choose.

• The approved TLSNotary Notary servers used in web_proof are entrusted to only
sign valid transcripts.

• The admin and owner of the Repository can whitelist any Risc Zero Image ID, DNS
signing key and TLSNotary Notary key.

Operational Recommendations. Highly-privileged, non-emergency operations should be
operated by a multi-sig contract or decentralized governance system. This applies to the admin
and owner roles of the Repository. These operations should be guarded by a timelock to ensure
there is enough time for incident response. Highly-privileged, emergency operations should

Veridise Audit Report: vlayer © 2025 Veridise Inc.

9 Contents

be tested in example scenarios to ensure the role operators are available and ready to respond
when necessary.

Full validation of operational security practices is beyond the scope of this review. Users of the
protocol should ensure they are confident that the operators of privileged keys are following
best practices such as:

▶ Never storing a protocol key in plaintext, on a regularly used phone, laptop, or device, or
relying on a custom solution for key management.

▶ Using separate keys for each separate function.
▶ Storing multi-sig keys in a diverse set of key management software/hardware services

and geographic locations.
▶ Enabling 2FA for key management accounts. SMS should not be used for 2FA, nor should

any account which uses SMS for 2FA. Authentication apps or hardware are preferred.
▶ Validating that no party has control over multiple multi-sig keys.
▶ Performing regularly scheduled key rotations for high-frequency operations.
▶ Securely storing physical, non-digital backups for critical keys.
▶ Actively monitoring for unexpected invocation of critical operations and/or deployed

attack contracts.
▶ Regularly drilling responses to situations requiring emergency response such as paus-

ing/unpausing.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

5 Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.) is specified. Table 5.1 summarizes the issues discovered:

Table 5.1: Summary of Discovered Vulnerabilities.
ID Description Severity Status
V-VLYR-VUL-001 Missing EVM environment validation . . . Critical Fixed
V-VLYR-VUL-002 Missing DNS record validation allows . . . Critical Fixed
V-VLYR-VUL-003 Inconsistent dependencies allow injection . . . Critical Fixed
V-VLYR-VUL-004 SetBlock and SetChain apply to all . . . High Fixed
V-VLYR-VUL-005 Time-travel forward admits arbitrary state High Fixed
V-VLYR-VUL-006 Information not included in DKIM . . . High Fixed
V-VLYR-VUL-007 Inconsistent metadata access allows access . . . High Fixed
V-VLYR-VUL-008 Request transcript redaction can change . . . High Fixed
V-VLYR-VUL-009 Response transcript redaction may silently . . . High Fixed
V-VLYR-VUL-010 Entries with an empty key incorrectly . . . Medium Fixed
V-VLYR-VUL-011 Precompile addresses are not unique Medium Fixed
V-VLYR-VUL-012 Email proof validation can be passed . . . Medium Fixed
V-VLYR-VUL-013 Incorrect From email address can be extracted Medium Fixed
V-VLYR-VUL-014 Email address validation does not match . . . Medium Fixed
V-VLYR-VUL-015 Delegate calls use incorrect storage Medium Fixed
V-VLYR-VUL-016 REVM block number not set for ForgeBlock Low Open
V-VLYR-VUL-017 Sequencer output silently overwritten Low Open
V-VLYR-VUL-018 Travel block silently truncated Low Fixed
V-VLYR-VUL-019 Potential for man in the middle attack Low Fixed
V-VLYR-VUL-020 Values with primary redaction character . . . Low Fixed
V-VLYR-VUL-021 Primary redaction characters may exist in . . . Low Open
V-VLYR-VUL-022 Two step ownership is preferred Low Open
V-VLYR-VUL-023 Lack of SpecID may cause confusion to users Low Acknowledged
V-VLYR-VUL-024 AnchorStateRegistry reads from a fixed slot Warning Open
V-VLYR-VUL-025 Unexpected JSON path syntax for nested . . . Warning Open
V-VLYR-VUL-026 Database seeding can cause inconsistencies Warning Open
V-VLYR-VUL-027 General smart contract recommendations Warning Partially Fixed
V-VLYR-VUL-028 Domain owners can prove arbitrary emails Warning Open
V-VLYR-VUL-029 Proofs may be replayed or frontrun Warning Open
V-VLYR-VUL-030 General Rust recommendations Warning Open

Veridise Audit Report: vlayer © 2025 Veridise Inc.

11 Contents

5.1 Detailed Description of Issues

5.1.1 V-VLYR-VUL-001: Missing EVM environment validation allows proof spoofing

Severity Critical Commit a763614
Type Logic Error Status Fixed

File(s) rust/services/call/guest/src/guest.rs

Location(s) main()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/1891,

https://github.com/vlayer-xyz/vlayer/pull/1950

The vLayer "call" zkVM application can be used to prove the output of a given transaction
that interacts with vLayer’s new precompiles. To do so, the following information needs to be
provided to the guest program:

1. Information about how to instantiate the REVM instances required by the call
2. Information about the initial execution environment, including the chainID and block

number
3. Information required to prove the correctness of requested travel calls
4. Information about the call to invoke

After execution, the guest program then makes the following information public for use
on-chain:

1. The starting block’s number
2. The starting block’s hash
3. The call target’s address
4. The call’s selector
5. the return value of the call

Importantly, the exposed public data must include enough information for a user to validate the
correctness of the initial execution environment as some of vLayer’s correctness guarantees rely
on the initial execution environment being correct. Using the above data, a user can validate
that the block number and has are consistent with their expected environment, but notably it
excludes information about the starting chain itself.

The chain ID is used by vLayer in a few ways. First, it is used to select the an appropriate
"ChainSpec" which summarizes information about a blockchain’s history. This chain spec and
transitively the chain ID are then used by the zkVM application in a few ways:

1. The ChainSpec is used along with the block number or timestamp to select the correct
execution configuration for REVM.

2. The ChainSpec is used to alter the behavior of vLayer primitives in some cases. For
example, as shown below when checking the validity of a "teleport" from one blockchain
to another using vLayer’s precompile, important validation is skipped if the chain is
configured to be a local testnet.

1 async fn verify(

2 &self,

3 evm_envs: &CachedEvmEnv<D>,

4 start_exec_location: ExecutionLocation,

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/1891
https://github.com/vlayer-xyz/vlayer/pull/1950

12 Contents

5) -> Result<()> {

6 info!("Verifying teleport");

7 let source_chain_id = start_exec_location.chain_id;

8 let source_chain_spec = chain::ChainSpec::try_from(source_chain_id)?;

9 if source_chain_spec.is_local_testnet() {

10 info!("Skipping teleport verification for local testnet");

11 return Ok(());

12 }

13

14 ...

15 }

Snippet 5.1: Snippet from the verify function used to perform safety checks for a teleport

Impact By not including information about the ChainID or ChainSpec, an attacker can
manipulate the initial execution environment. To do so, the attacker would provide the expected
block hash, header and number but would change the input ChainID. The result would be an
execution that appears correct with respect to the public output but could be manipulated. More
specifically a malicious user could:

1. Execute a particular block under the wrong REVM context. Since different forks of the EVM
have different instruction semantics and some EVM chains have different precompiles,
this could cause the Call result to be incorrect.

2. Avoid validation performed by vLayer to check the consistency of certain operations such
as teleport. In the teleport case specifically, by selecting a chain ID that corresponds to
a "local testnet" a malicious user can trick vLayer into skipping additional validation
that the target chain is configured correctly. The resulting proof would appear to prove
information about the target chain but would not do so in reality as the attacker could
arbitrarily control the target state.

Recommendation Include information about the chain configuration of the initial execution
environment. We would recommend including both the Chain ID and a SpecID selected by the
ChainSpec.

Developer Response The developers have added the ChainID to the CallAssumptions and
check that the executing chain’s ID matches in the ProofVerifierBase.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

13 Contents

5.1.2 V-VLYR-VUL-002: Missing DNS record validation allows email forgery

Severity Critical Commit a763614
Type Data Validation Status Fixed

File(s) rust/email_proof/src/lib.rs

Location(s) parse_and_verify()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2079

DKIM verification is a process to help determine an email’s authenticity by validating and
ensuring that the email is from the domain of the sender. To do so, a given domain must post a
DKIM DNS record on their domain that provides a cryptographic public key 𝑃 while keeping
the associated private key 𝑆 secret. When an email is sent, the domain can then attest to the
authenticity of the email by signing parts of the email with 𝑆 and providing the cryptographic
signature in a DKIM record in the email’s header. Recipients may then check the authenticity of
the email by querying the domain for the DKIM record and ensuring that the information was
signed by the owner of the listed public key 𝑃.

To check the authenticity of an email, vLayer verifies the integrity of an email’s DKIM record in
the parse_and_verify function shown below. To do so, a DNS record that has been signed by a
trusted entity is provided, along with the email undergoing verification. The function then:

1. Ensures that the DNS record is indeed signed by the trusted entity
2. Extracts the domain of the email’s sender
3. Checks the DKIM header’s domain matches the sender’s domain and that the public key

stored in the DNS record can be recovered from the email’s content and DKIM signature
stored in the header.

While the above validates that a DKIM signature exists for the provided public key, it does not
validate the source of the public key. This allows a user to provide any DKIM DNS record, not
just the one provided by the domain of the email.

1 pub fn parse_and_verify(calldata: &[u8]) -> Result<Email, Error> {

2 let (raw_email, dns_record, verification_data) = UnverifiedEmail::parse_calldata(

calldata)?;

3

4 verification_data.verify_signature(&dns_record)?;

5

6 let email = mailparse::parse_mail(&raw_email)?;

7

8 let from_domain = from_header::extract_from_domain(&email)?;

9

10 dkim::verify_email(email, &from_domain, dns::parse_dns_record(&dns_record.data)?)

11 .map_err(Error::DkimVerification)?

12 .try_into()

13 .map_err(Error::EmailParse)

14 }

Snippet 5.2: Definition of the parse_and_verify function used to check the validity of an email

Impact Since the domain name of the input DNS record is not validated, an attacker can
verify arbitrary emails by adding a DKIM Signature header to the email that uses a public key

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2079

14 Contents

controlled by the user. The malicious actor only needs said public key to be signed by vlayer for
an arbitrary domain. He can then sign an email for any other domain.

More specifically, an email can be forged via the following steps:

1. Create a DKIM DNS record on any host that the user controls with some newly created
public key

2. Craft the forged email that one to verify, complete with the "From", "To" and "Subject"
fields

3. Construct a DKIM signature header using the public key from step 1 while setting the "d"
tag of the signature to the forged "from" domain.

4. Using the verifiable_dns module, fetch the malicious DNS record from step 1
5. Provide the signed DNS record and forged email to this module, all of which will be

verified.

Recommendation Ensure that the DNS record’s domain name is consistent with the informa-
tion in the email

Developer Response The developers defined a custom format for which DNS record names
will conform to, and confirm that the selector and domain tag values of the DKIM-Signature
field match this format.

Updated Veridise Response The issue has been fixed, however the Veridise analysts note that
this implementation may be too restrictive as the DKIM RFC notes that only a single valid
DKIM-Signature header is required to pass validation. If users are expected to trim these invalid
or irrelevant headers, then provide documentation surrounding this expectation.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://datatracker.ietf.org/doc/html/rfc6376#section-6.1

15 Contents

5.1.3 V-VLYR-VUL-003: Inconsistent dependencies allow injection of malicious
email bodies

Severity Critical Commit a763614
Type Data Validation Status Fixed

File(s) rust/email_proof/src/email.rs

Location(s) get_body()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2091

A discrepancy between the handling of newline characters in the mailparse and dkim libraries
enables malicious users to inject arbitrary email bodies into a DKIM signed email and still pass
validation.

When parsing an email, the RFC 5322 specification requires that each header field ends in a
CRLF (0x0D 0x0A). Additionally, the headers and the body of an email are separated by a blank
line, i.e one which only contains a CRLF. Therefore, there will be two CRLF pairs between the last
character of the last header field’s value, and the first character of the body.

When parsing email headers with parse_mail(), the mailparse library does not adhere to the
requirement that header fields end with a CRLF. Instead, it will consider a lone LF character as
sufficient enough to consider the end of a header field as long as the following line does not
contain a WSP character indicating a folded header value. This implementation error also
extends to the separation between the headers and the body of the email.

However, the dkim library correctly follows the spec and extracts the body during the body hash
calculation with the below function:

1 fn get_body<’a>(email: &’a mailparse::ParsedMail<’a>) -> Result<Vec<u8>, DKIMError> {

2 Ok(bytes::get_all_after(email.raw_bytes, b"\r\n\r\n").to_vec())

3 }

Snippet 5.3: Snippet from the dkim library:

This discrepancy manifests in the call to the parse_and_verify() function, which, amongst
other data, parses the inputted email string via mailparse::parse_mail(). The DKIM validation
will use the correct body separation to verify the email. However, the ParsedMail is then
converted to an Email via the TryFrom trait implementation in email.rs. This conversion calls
the get_body() function, which will use the ParsedMail::get_body function on every MIME
part of the ParsedMail. Since the parse_mail() function already incorrectly parsed the email,
this function call can return data that was not validated in the bodyhash of the email. A proof
of concept is provided below.

Impact A malicious user can craft emails in which they insert additional MIME body values
that will not be included in the DKIM bodyhash, but they are considered bodies in the
ParsedMail and returned to the user as if they were verified by the precompile. A malicious user
can therefore manipulate an existing email by inserting a new "body" section after the headers
separated by a blank line that only uses \n. The original body is then appended to the malicious
body separated by the expected empty line \r\n. By doing so, the email will still pass DKIM
verification but will be returned to the user as though all parts of the email were verified.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2091
https://datatracker.ietf.org/doc/html/rfc5322#section-2.2

16 Contents

Recommendation Our investigation indicates this is still an issue in the latest version of the
upstream mailparse library. While this issue still exists, manual verification should be done
regarding the line termination in the passed email such that a lone LF character is not observed
outside of multiline header values.

Proof of Concept The following test can be placed in the rust/email_proof/src/lib.rs file, in
addition to adding the pub(crate) modifier to the get_body() function. The test will add an
additional MIME body part to the already-signed email, and still pass DKIM validation.

1 #[test]

2 fn veridise_extra_data() -> anyhow::Result<()> {

3 use crate::email::get_body;

4 let mut email = signed_email_fixture();

5

6 email = email.replace(

7 "boundary=\"00000000000064b16c062913f525\"\r\n",

8 "boundary=\"00000000000064b16c062913f525\"\n\n--00000000000064b16c062913f525\

r\nContent-Type: text/plain; charset=\"UTF-8\"\r\n\nTHIS IS EXTRA DATA\r\n",

9);

10

11 let calldata = calldata(&email, &DNS_FIXTURE, &VERIFICATION_DATA);

12 let email = parse_and_verify(&calldata)?;

13

14 println!("Email body from parse_and_verify: {}", email.body);

15 Ok(())

16 }

After running the test, one can see that the "THIS IS EXTRA DATA" string is shown before the
DKIM-validated body of the message, and validation still passes.

Developer Response The developers have implemented a function that checks every
character after a CRLF is a valid header field character.

Updated Veridise Response The header bytes are now checked to never contain a lone
newline character with the verify_no_fake_separator() function. Note that the body should
also contain no lone newline characters according to the RFC, but this does not effect this
issue.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

17 Contents

5.1.4 V-VLYR-VUL-004: SetBlock and SetChain apply to all following transactions

Severity High Commit a763614
Type Logic Error Status Fixed

File(s) rust/services/call/engine/src/travel_call/inspector.rs

Location(s) on_call
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/1890/

The vLayer developers integrate several pre-compiles into the REVM instance running within
their zkVM application. Among these, two pre-compiles-known as "travel calls"-allow developers
to alter the blockchain’s execution environment. Specifically, they can query state from other
blocks on the same chain (SetBlock) or from a different EVM-based blockchain (SetChain).
When either the SetBlock or SetChain precompile is invoked, the execution environment for the
next function call is modified, as outlined in vLayer’s documentation.

To enable this functionality, vLayer uses a REVM inspector to monitor the virtual machine’s
execution. This inspector can override the behavior of a call via the on_call function (given
below) if the call needs to be executed in a different environment (i.e. location). However, when
a travel call is made (when self.location is Some), the on_call function triggers the travel call by
invoking the transaction_callback but afterwards it does not reset self.location to None. As a
result, when on_call is invoked again, self.location remains set, causing another travel call to
occur. Additionally, no other API method is provided to reset the location to None. Therefore,
once a travel call is used, all subsequent calls in the execution will continue to be travel calls
even if the user attempts to use the precompiles to restore the original environment.

1 fn on_call(&mut self, inputs: &CallInputs) -> Option<CallOutcome> {

2 let Some(location) = self.location else {

3 return None; // If no setChain/setBlock happened, we don’t need to teleport

to a new VM, but can continue with the current one.

4 };

5 info!(

6 "Intercepting the call. Block number: {:?}, chain id: {:?}",

7 location.block_number, location.chain_id

8);

9 let (result, metadata) =

10 (self.transaction_callback)(&inputs.into(), location).expect("Intercepted

call failed");

11 info!("Intercepted call returned: {result:?}");

12 self.metadata.extend(metadata);

13 let outcome = execution_result_to_call_outcome(&result, inputs);

14 Some(outcome)

15 }

Snippet 5.4: Definition of the on_call function which is used to implement the travel call
behavior

Impact The behavior of travel calls as implemented by on_call does not match the behavior
described in vLayer’s documentation. Additionally, travel calls are more restrictive and
expensive to execute than typical function calls as vLayer enforces that they must return a value.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/1890/

18 Contents

Since there is no way to stop traveling once a travel call has been requested, it is likely that some
applications will encounter errors.

Recommendation Before returning the outcome of the call, set self.location to None

Developer Response The developers now utilize Option::take() when checking the location,
which will set it to None.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

19 Contents

5.1.5 V-VLYR-VUL-005: Time-travel forward admits arbitrary state

Severity High Commit a763614
Type Logic Error Status Fixed

File(s) rust/services/call/engine/src/verifier/time_travel.rs

Location(s) verify()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/1996

The TravelCallVerifier will verify the legitimacy of the CachedEvmEnv (all EvmEnv that will be
used) with respect to the start_execution_location. It does so by first verifying the teleports,
and then verifies the time travel of each chain and its blocks.

The Time Travel verifier checks the provided chain proofs to assert the coherency of a chain of
blocks (essentially the correct formation of the parentHash field in block headers) and ensures
that the information accessed during a travel call is consistent with the given chain proof. The
core validation done in the verifier can be seen below:

1 let block_numbers = blocks.iter().map(|(block_num, _)| *block_num).collect();

2 let chain_proof = client.get_chain_proof(chain_id, block_numbers).await?;

3 self.chain_proof_verifier.verify(chain_proof.as_ref())?;

4 for (block_num, block_hash) in blocks {

5 let trie_block_hash = chain_proof

6 .block_trie

7 .get(block_num)

8 .ok_or(Error::BlockNotFound { block_num })?;

9 if trie_block_hash != block_hash {

10 return Err(Error::BlockHash {

11 block_num,

12 hash_in_input: block_hash,

13 proven_hash: trie_block_hash,

14 });

15 }

16 }

Snippet 5.5: Snippet from
rust/services/call/engine/src/verifier/time_travel.rs:verify()

In the Teleport verifier, it will use the AnchorStateRegistry of every destination L2 in order to
verify the legitimacy of the claimed blocks. As a part of this check, it will also ensure the latest
block number used in a destination teleport is not greater than the latest anchored block.

The combination of the Time Travel and Teleport verifiers means that one can ensure that the
latest claimed L2 block exists, in addition to all of its ancestors being correctly formed. However,
the Teleport verifier does not check the chain of blocks used in Time Travel functionality on the
base chain.

Therefore, one can append additional blocks as long as the coherency of them is valid. Doing
this allows one to set the future state of the chain to whatever they desire. Notably, the the call
guest program’s journal does not include the latest block used in the call.

Impact When creating a chain-proof, the consistency of a given chain is checked. For all blocks
at or before the "starting block", this is sufficient as the block number and hash are included in

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/1996

20 Contents

the Journal which should be verified on-chain. For future blocks, however, such a consistency
check will not ensure that a given block is on the given blockchain as one must only ensure
that their specified parent hash is correct, all remaining data can be manipulated arbitrarily
(including the state root). As such, if a malicious actor is able to time-travel into the future they
can arbitrarily manipulate the produced proof.

Recommendation If the developers do not intend to allow time-travel to the future, add a
restriction that all time-travels on the starting chain must be to a previous block (similar to
the restriction already in teleport). If the developers do want to allow time-travel to the future,
include the most-recent block in the produced journal.

Developer Response The developers have added the ensure_no_forward_jump() function to
the Travel Call Executor in order to ensure that all calls to internal_call() do not occur at a
block number past the starting location. The starting location is checked on chain to be a valid
block, therefore this check is sufficient.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

21 Contents

5.1.6 V-VLYR-VUL-006: Information not included in DKIM signature can be
returned

Severity High Commit a763614
Type Data Validation Status Fixed

File(s) rust/email_proof/src/lib.rs

Location(s) parse_and_verify()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2116

The parse_and_verify() function will call the DKIM module’s verify_email() function to
verify the DKIM signature on the extracted email. It will then utilize the try_into() method
implemented for converting a ParsedMail to the crate-defined Email and will return said Email.
As seen below, the returned Email from the TryFrom trait implementation contains the from,
body, to and subject.

1 fn try_from(mail: ParsedMail) -> Result<Self, Self::Error> {

2 ...

3 Ok(Email {

4 from: from_email,

5 body: get_body(&mail)?,

6 to,

7 subject,

8 })

9 }

Snippet 5.6: Snippet from rust/email_proof/src/email.rs:try_from()

The DKIM-Signature header field itself contains a field that lists the header fields of the email
to be included in the data that is signed. This field (dubbed as h=) only requires that the from

field is signed. In addition to the bodyhash inherently included in the required bodyhash (bh=)
field, all other fields of the email being attested to are not required to be signed. Therefore, the
to and subject field may not be signed.

Impact The parse_and_verify() function does no verification that the returned to and
subject fields on the Email returned from try_from() actually were validated by DKIM.
Therefore, if those header fields were omitted from h=, they can be arbitrarily set. Note that this
conflicts with the Solidity VerifiedEmail struct, since the mentioned fields may not be
verified.

Recommendation Require that validated emails have signed the to and subject fields, or
change the documentation and nomenclature surrounding the VerifiedEmail struct.

Developer Response The developers now utilize the verify_required_headers_signed()

function to ensure the from, to and subject fields are signed.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2116
https://datatracker.ietf.org/doc/html/rfc6376#section-5.4

22 Contents

5.1.7 V-VLYR-VUL-007: Inconsistent metadata access allows access to unsigned
information

Severity High Commit a763614
Type Logic Error Status Fixed

File(s) rust/email_proof/src/email.rs, rust/email_proof/src/

from_header.rs

Location(s) header_getter, extract_from_domain
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2116,

https://github.com/vlayer-xyz/vlayer/pull/2207

When vLayer processes an email, it always retrieves a "From", "To" and "Subject" header from
the email header which are returned after verification along with the email body. If the email
contains multiple instances of any of these headers, the first occurrence of the header is chosen
and returned as shown in the header_getter function below.

According to RFC 6376, when there are multiple instances of a header, the last header instance
not already presented to the signing algorithm is added to the signature. Since a valid email
can have multiple "From" headers and the mailparse dependency does not seem to enforce the
uniqueness of either "To" or "Subject", an unvalidated instance of a header can be returned
despite some other instances being verified. New headers can therefore be added to the email
which would be returned in the verified email.

1 fn header_getter(headers: Headers) -> impl Fn(&str) -> Option<String> + ’_ {

2 move |key: &str| headers.get_first_value(key).map(String::from)

3 }

Snippet 5.7: Definition of header_getter which returns a function to fetch an email header

Impact Unverified information can be returned returned by the precompile. This allows
malicious users to forge information which would then be trusted by prepending a new header
to an existing email. Note that while "From" headers can be forged, the verification process
restricts the forged email address to have the same domain as a DKIM header included in the
email.

Recommendation Ensure that any returned data is signed by checking that the returned
header is included in the DKIM signed header field list and is the last instance of the header (if
only one instance is returned).

Developer Response The developers now retrieve the last instance of a header and confirm
the header field names are in the list of signed fields in the DKIM-Signature.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2116
https://github.com/vlayer-xyz/vlayer/pull/2207
https://datatracker.ietf.org/doc/html/rfc6376#section-5.4.2

23 Contents

5.1.8 V-VLYR-VUL-008: Request transcript redaction can change path and headers

Severity High Commit a763614
Type Data Validation Status Fixed

File(s) rust/web_proof/src/transcript_parser.rs

Location(s) parse_request()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2168

When utilizing the web_proof precompile, the web proof is verified and returns an object
containing the url of the request to which this TLSNotary web proof attests. This is done by
using the request_url() method of a RequestTranscript, which simply calls the
parse_request_and_validate_redaction() function. This will substitute the redacted bytes,
represented by NULL bytes (0x00), and then parse the redacted request via parse_request().

parse_request() utilizes the httparse crate’s Request.parse() method to read the headers and
path of the request. This external functionality roughly works as follows:

1. Use parse_method() to determine the method of the request. When this is not the normal
POST or GET request, it utilizes the parse_token() function which will read bytes as long as
they are valid and until a space character is reached.

2. The path/url is parsed via parse_uri(), which will similarly read until a space is
encountered.

3. The HTTP is version is then parsed, which reads exactly 8 bytes and must either be
HTTP/1.0 or HTTP/1.1.

4. The characters after the version must be newlines.
5. Parse the headers

Since the requests’ redacted bytes are replaced with * or + characters via
replace_redacted_bytes(), which are valid tokens in parse_token(), then one can redact an
arbitrary number of bytes starting with the very first byte.

Impact Due to no limitations on the location of redacted bytes, one can redact the first line
(containing the method, uri and version) and all headers in the HTTP request. One can then put
their desired URI and headers in the body of their request, which will be incorrectly parsed as
the URI and headers of the request.

Due to the web_proof verifier only using the request to return the URL, this is the impactful
part of the issue in the context of where this request parsing is used. Note that because the url
returned from parse_url() is compared to the server_name of the web proof’s Presentation

(which is signed and cannot be manipulated), this issue only enables one to change the path to
one that exists on the same domain. However, this can still be dangerous as the path of the real
request may be one that the attacker controls, in which case an arbitrary body can be returned
for the corresponding response.

For example, one can change a request made to example.com/usercontrolled appear to be
made to example.com/servercontrolled.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2168

24 Contents

Recommendation Ensure that the method of the HTTP is not redacted, and therefore the first
line of the HTTP request (which contains the path) must be fully parsed. Additionally, this issue
arose due to the interaction between two third party crates: one to parse requests and one to
redact requests. We recommend that the developers ensure they understand the interactions
between these creates, particularly by exercising them with negative tests.

Proof of Concept The below test will successfully pass, and one can imagine that the
beginning \0 bytes are a redaction of the first line and following headers of an HTTP request.

1 #[test]

2 fn veridise_redacted_request() {

3 let raw_request = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0 https://urlinbody.com

HTTP/1.1\r\nHeader-in-body: true\r\n";

4 let transcript = RequestTranscript::new(raw_request.as_bytes().to_vec());

5 let url = transcript.parse_url().unwrap();

6 assert_eq!(url, "https://urlinbody.com");

7 }

Developer Response The developers now ensure that the returned method is either POST or
GET. Additionally, the host is returned from the parse_request() function and ensured to be
un-redacted in parse_request_and_validate_redaction().

© 2025 Veridise Inc. Veridise Audit Report: vlayer

25 Contents

5.1.9 V-VLYR-VUL-009: Response transcript redaction may silently overwrite data

Severity High Commit a763614
Type Data Validation Status Fixed

File(s) rust/web_proof/src/transcript_parser.rs

Location(s) parse_response()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2314

Note that this issue is similar to V-VLYR-VUL-008 with different field manipulations.

When utilizing the web_proof precompile, the web proof is verified and returns an object
containing the body of the response that this TLSNotary web proof attests to. This is done by
using the parse_body() method of a ResponseTranscript, which simply calls the
parse_response_and_validate_redaction() function. This will substitute the redacted bytes,
represented by NULL bytes (0x00), and then parse the redacted response via
parse_response().

parse_request() utilizes the httparse crate’s Response.parse() method to read the headers of
the response and return the starting index in the byte array of the body. This external
functionality roughly works as follows:

1. Parse the version of the response (similarly to step 3 in the steps of V-VLYR-VUL-008)
2. Parse the 3-digit response code
3. Parse the reason via parse_reason(), which similarly to parse_method() will read an

arbitrary amount of data, this time until a newline character is observed.
4. Parse the headers

After a response’s version, code and reason fields are parsed, one can redact a header’s value to
an arbitrary number of bytes into the body. This would nullify any following headers and may
truncate the body. One may also nullify all header fields by redacting the reason and headers,
note that this may allow insertion of headers from the body.

Impact One may nullify arbitrary headers that follow a header whose value is redacted.
Additionally, one can truncate the beginning of a body in order for it to appear that the
response’s body object contains fewer fields than it actually does. This could make it appear
that the body starts in a different location without the redaction being observable.

Recommendation Either require that no headers are redacted, or provide documentation to
end users that the parsed body may be incomplete. Note, if a malicious actor can control part of
a response’s body, they can make it appear as though the embedded JSON content is the entire
content of the webpage.

Proof of Concept The following test shows how a response may be redacted, starting with
its first header field’s value, into manipulating the structure of the body. Note that the real
transcript contains two objects in the entire body. However, we can manipulate the beginning of
the body and redact the last value of the first object in order to maintain a valid JSON shape.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2314

26 Contents

1 #[test]

2 fn veridise_redacted_response() {

3 let unredacted_response = "HTTP/1.1 200 OK\r\nPlainHeader: Value1\r\n\r\n{\"obj1

\" : {\"k1\": 5, \"k2\": 10}, \"obj2\": \"IMPORTANTINFO\"}\r\n";

4 let unredacted_transcript =

5 ResponseTranscript::new(unredacted_response.as_bytes().to_vec());

6 println!("{}", unredacted_transcript.parse_body().unwrap());

7

8 let redacted_response = "HTTP/1.1 200 OK\r\nPlainHeader:

\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\r\n\r\n{\"k1\": 5, \"k2\":

\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\"}\r\n";

9 let redacted_transcript = ResponseTranscript::new(redacted_response.as_bytes().

to_vec());

10 println!("{}", redacted_transcript.parse_body().unwrap());

11 }

This test’s print statements will output the following:

1 {"obj1" : {"k1": 5, "k2": 10}, "obj2": "IMPORTANTINFO"}

2

3 {"k1": 5, "k2": "*****************"}

Developer Response The developers now check that no redaction occurs inside of the body
of responses, and all JSON responses must be properly formatted.

Updated Veridise Response The fix should make it sufficiently difficult to perform such a
redaction described in this issue in most non-malicious JSON responses. We have some concerns
that it could be possible to still perform such an attack in a specifically crafted malicious
response. In this case, however, the server is the one sending the malicious payload, so users
should carefully validate the domain they are communicating with. Additionally, this fix is
sufficient specifically because the body is required to be in properly formatted JSON, so it
should be noted that if this requirement is ever removed or relaxed, the issue could return.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

27 Contents

5.1.10 V-VLYR-VUL-010: Entries with an empty key incorrectly made as branch
nodes

Severity Medium Commit a763614
Type Logic Error Status Fixed

File(s) rust/mpt/src/node/insert/entry.rs

Location(s) from()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/1899

In the From<Entry> trait implementation for Node, the conversion has the following logic to
make a branch node for an Entry with an empty key:

1 impl<D> From<Entry> for Node<D> {

2 fn from(Entry { key, value }: Entry) -> Self {

3 if key.is_empty() {

4 Node::branch_with_value(value)

5 } else {

6 Node::leaf(&*key, value)

7 }

8 }

Snippet 5.8: Snippet from rust/mpt/src/node/insert/entry.rs:from()

However, this is not a proper implementation of the merkle patricia trie specification, and the
node should instead still be a leaf node, just with an empty key.

Impact Insertions into the mpt will incorrectly encode values.

Recommendation When the key is empty return a Node::leaf with an empty key.

Developer Response The developers now return a Node::leaf no matter if the key is empty
or not.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/1899

28 Contents

5.1.11 V-VLYR-VUL-011: Precompile addresses are not unique

Severity Medium Commit a763614
Type Data Validation Status Fixed

File(s) rust/services/call/precompiles/src/lib.rs

Location(s) PRECOMPILES
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2182

VLayer adds several custom precompiles to the instance of REVM executed in their zkVM
application. These custom precompiles must be assigned to an unused address so that the
execution environment can distinguish their invocations. The developers provide a summary of
each added precompile in the PRECOMPILES constant (shown below) which includes the
allocated address. In this definition, we noted that web_proof precompile is defined at address
0x100 which collides with Optimism’s P256VERIFY precompile at the same address.

1 pub const PRECOMPILES: [Precompile; NUM_PRECOMPILES] = generate_precompiles![

2 // (address, precompile, base_cost, byte_cost, tag)

3 (0x100, web_proof, 1000, 10, Tag::WebProof),

4 (0x101, email_proof, 1000, 10, Tag::EmailProof),

5 (0x102, json_get_string, 1000, 10, Tag::JsonGetString),

6 (0x103, json_get_int, 1000, 10, Tag::JsonGetInt),

7 (0x104, json_get_bool, 1000, 10, Tag::JsonGetBool),

8 (0x105, json_get_array_length, 1000, 10, Tag::JsonGetArrayLength),

9 (0x110, regex_is_match, 1000, 10, Tag::RegexIsMatch),

10 (0x111, regex_capture, 1000, 10, Tag::RegexCapture),

11 (0x120, url_pattern_test, 1000, 10, Tag::UrlPatternTest),

12];

Snippet 5.9: Definition of the PRECOMPILES constant where the allocated address is the first
value in the tuple

Impact This address collision could lead to functional failures when both precompiles are
called within the same execution context, as the system may not correctly distinguish between
the two precompiles. This would likely result in broken or unintended behavior, undermining
the reliability of the zkVM application in environments where both precompiles are used.

Recommendation Ensure that the addresses assigned to their custom precompiles do not
conflict with precompiles used by other chains, including Optimism. We recommend that vLayer
reviews the list of precompile addresses across supported chains and adjusts the allocation to
avoid potential collisions.

Developer Response The developers use a calculation similar to ERC-7201 in order to generate
a unique address range for their precompiles.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2182
https://specs.optimism.io/protocol/precompiles.html

29 Contents

5.1.12 V-VLYR-VUL-012: Email proof validation can be passed during time travel

Severity Medium Commit a763614
Type Data Validation Status Fixed

File(s) contracts/vlayer/src/EmailProof.sol

Location(s) verify()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2167

The EmailProof contract contains two checks that verify the legitimacy of the DNS record that
contains the public key of the DKIM signed email, as seen below:

1 function verify(UnverifiedEmail memory unverifiedEmail) internal view returns (

VerifiedEmail memory) {

2 require(unverifiedEmail.verificationData.validUntil > block.timestamp, "EmailProof:

expired DNS verification");

3 if (ChainIdLibrary.isMainnet() || ChainIdLibrary.isTestnet()) {

4 require(

5 TestnetStableDeployment.repository().isDnsKeyValid(unverifiedEmail.

verificationData.pubKey),

6 "Not a valid VDNS public key"

7);

8 }

9 ...

10 }

Snippet 5.10: Snippet from contract/vlayer/src/EmailProof.sol

Essentially, the validUntil date is checked to have not passed, and the key used to sign the
DNS record is checked against the repository to be registered.

However, given that vlayer introduces Time Travel functionality to execute in previous blocks,
one can Time Travel to a block in which the validUntil field passes the check.

In regards to the DNS signing key, if a key registered in the repository is ever compromised,
then one can validate any email they desire as they could Time Travel to a block in which the
key was still registered as valid.

Impact Dependent upon the usage of DNS signing keys and the validUntil field, one may be
able to validate arbitrary emails.

Recommendation Prevent usage of the email proof precompile during time-travel.

Developer Response The developers now check if a time travel or teleport is occurring via
the is_on_histortic_block() function, and will panic if that is true while executing a time
sensitive precompile, checked via is_time_dependent().

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2167

30 Contents

Updated Veridise Response With the ProofVerifierBase, the executing block must occur
within the previousAVAILABLE_HISTORICAL_BLOCKS number of blocks. Therefore one could still
execute with the previous Repository state until this number of blocks have passed. We
recommend storing the block number of the last Repository modification so that verifier
contracts can ensure they are executing on the latest version.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

31 Contents

5.1.13 V-VLYR-VUL-013: Incorrect From email address can be extracted

Severity Medium Commit a763614
Type Logic Error Status Fixed

File(s) rust/email_proof/src/email.rs

Location(s) extract_address_from_header()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2133,

https://github.com/vlayer-xyz/vlayer/pull/2207

When an email is processed by vLayer, information must be extracted from the email header
including the email address of the sender. The sender’s email address is extracted from the
"From" field of the email header which has the following format according to RFC 5322:

1. Display Name <Email Address>
2. Email Address

The extract_address_from_header() function, shown below, is used to extract the address from
the "From" header. It first identifies if the string contains a "<" character. If no such character is
found, the email address itself is returned (i.e. the email address is in the second format shown
above). If the character is found, the string between the first instance of "<" and the last instance
of ">" is extracted and returned. While this will indeed extract the email address in the first
case, it may also extract the incorrect email address (e.g. safe@safe.org would be extracted
from "<safe@safe.org>"@malicious.net)

1 pub fn extract_address_from_header(header: &str) -> Result<String, MailParseError> {

2 let Some(start) = header.find(’<’) else {

3 return Self::validate_email(header);

4 };

5 let maybe_end = header.rfind(’>’);

6

7 match maybe_end {

8 None => Err(Self::invalid_from_header()),

9 Some(end) if end <= start => Err(Self::invalid_from_header()),

10 Some(end) => Self::validate_email(&header[start + 1..end]),

11 }

12 }

Snippet 5.11: Definition of extract_address_from_header which is used to extract an email
address from a header entry like “From” or “To”

Impact While quoted email addresses are rarely used, if a user is able to create an arbitrary
address, they can spoof other email addresses. Due to the method used to verify the DKIM
signature headers, there are restrictions as the spoofed email address must have the same
domain as a DKIM header included in the email.

Recommendation More specifically recognize the above pattern. As an example, the
Display Name <Email Address> case must end with a ">" while the Email Address case
cannot.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2133
https://github.com/vlayer-xyz/vlayer/pull/2207
https://www.rfc-editor.org/rfc/rfc5322#section-3.6.2

32 Contents

Proof of Concept The following test will incorrectly pass.

1 #[test]

2 fn malicious_email() {

3 let email = r#""<safe@safe.org>"@malicious.net"#;

4 let extracted = Email::extract_address_from_header(email);

5 // Note the real email is @malicious.org, not @safe.org!

6 assert_eq!(extracted.unwrap(), "safe@safe.org");

7 }

Developer Response The developers now use the addrpase() function from the mailparse

crate, check that only one address is returned, and trim the whitespace before returning the
value.

Updated Veridise Response According to the documentation, the addrpase_header()

function should be used instead.

Updated Developer Response The developers now use the addrparse_header() function.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://docs.rs/mailparse/latest/mailparse/fn.addrparse.html

33 Contents

5.1.14 V-VLYR-VUL-014: Email address validation does not match specification

Severity Medium Commit a763614
Type Data Validation Status Fixed

File(s) rust/email_proof/src/email_address.rs

Location(s) is_valid()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2133,

https://github.com/vlayer-xyz/vlayer/pull/2207

Various issues in the email_address.rs file lead to inconsistencies of email address validation
compared to the specification.

RFC 5322 defines what a valid email address is, and the ABNF syntax for an email address
(and some of its dependent rules) is defined as below:

FWS = ([WSP CRLF] 1WSP) / obs-FWS ; Folding white space ctext = %d33-39 / ; Printable
US-ASCII %d42-91 / ; characters not including %d93-126 / ; "(", ")", or "" obs-ctext ccontent =
ctext / quoted-pair / comment comment = "(" ([FWS] ccontent) [FWS] ")" CFWS = (1([FWS]
comment) [FWS]) / FWS

atext = ALPHA / DIGIT / ; Printable US-ASCII "!" / "#" / ; characters not including "$" / "%" / ;
specials. Used for atoms. "&" / "’" / "" / "+" / "-" / "/" / "=" / "?" / "^" / "_" / "‘" / "{" / "|" /
"}" / " " atom = [CFWS] 1atext [CFWS] dot-atom-text = 1*atext ("." 1atext) dot-atom = [CFWS]
dot-atom-text [CFWS]

address = mailbox / group mailbox = name-addr / addr-spec name-addr = [display-name]
angle-addr angle-addr = [CFWS] "<" addr-spec ">" [CFWS] / obs-angle-addr addr-spec =
local-part "@" domain local-part = dot-atom / quoted-string / obs-local-part domain = dot-atom
/ domain-literal / obs-domain domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]
dtext = %d33-90 / ; Printable US-ASCII %d94-126 / ; characters not including obs-dtext ; "[", "]",
or ""

The logic to parse an email address in email_address.rs deviates from the above specification,
allowing both invalid email addresses to be accepted and valid email addresses to be rejected as
outlined below.

Accepted invalid email addresses:

1. The remove_parts_inside_quotes() function is used to remove quoted sections of an
email address during validation as quoted sections allow almost arbitrary text. The logic
to remove quotes, however, allows multiple quoted sections in an email but the
specification above only allows the entire local part to be quoted. Any " characters found
within a quoted section must first be escaped.

2. The remove_parts_inside_quotes() function removes quoted parts of the email so that
the remaining parts can be validated. There are restrictions, however, on the characters
that can occur in the quoted part of an email. For example, an unescaped " is not allowed.

Rejected valid email addresses:

1. is_character_not_allowed_in_email_address(): This function is utilized in
contains_invalid_characters(), which is called on both the unquoted_username and the

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2133
https://github.com/vlayer-xyz/vlayer/pull/2207
https://datatracker.ietf.org/doc/html/rfc5322

34 Contents

domainname. This function is too restrictive for the username (local-part) of an email
address, as it does not provide all the characters defined in a dot-atom.

2. The handle_quotes() function is used to recognize quotes so that quoted sections can be
removed during email validation. It, however, recognizes any " character as an opening to
a quoted section or closing to a quoted section, even if the quotes are escaped. This can
prevent properly quoted emails such as "\""@test.org from being accepted.

Impact This logic is used to validate the extracted "From" email address to ensure a proper
email address is indeed extracted. Since some invalid addresses are accepted and some valid
email addresses are rejected, it can be the case that this validation prevents verification of some
emails and may allow verification of improperly formatted (or extracted) emails.

Recommendation While email address extraction/validation is notoriously difficult, we
would recommend supporting a fragment of valid email addresses and documenting this
fragment. As an example, quoted locals are uncommon and many email providers do not allow
the creation of quoted email addresses.

Developer Response The developers now use the addrpase() function from the mailparse

crate.

Updated Veridise Response While the fix does appear to fix the issue, the addrpase_header()

function should be used instead. Additionally, Veridise has not reviewed the library code itself
for correctness and the library notes that it does not always follow RFC5322, which includes the
specification of an email address. The library appears to be well-tested and there are no open
issues regarding email parsing.

Updated Developer Response The developers now use the addrparse_header() function.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

35 Contents

5.1.15 V-VLYR-VUL-015: Delegate calls use incorrect storage

Severity Medium Commit a763614
Type Logic Error Status Fixed

File(s) rust/services/call/engine/src/io.rs

Location(s) from()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2164

The travel call Inspector intercepts calls to determine whether a travel call API was invoked or
if the current call should teleport or time-travel. If the current call is determined to teleport or
time-travel, the Inspector will invoke its on_call function which, in turn, eventually invokes a
transaction on a new instance of REVM configured to the desired state. In the process, the
REVM’s CallInputs is transformed into the Call struct via the code shown below

1 impl From<&CallInputs> for Call {

2 fn from(inputs: &CallInputs) -> Self {

3 Self {

4 to: inputs.bytecode_address,

5 data: inputs.input.clone().into(),

6 gas_limit: inputs.gas_limit,

7 }

8 }

9 }

Snippet 5.12: Snippet from rust/services/call/engine/src/io.rs:from()

Notably, the Call structure does not have the ability to differentiate between a normal CALL and
a DELEGATECALL. This differentiation arises from the inclusion of the bytecode_address while
ignoring the target_address. The former specifies the account where the bytecode to run is
stored, and the latter specifies the storage and context that will be used during execution. For a
normal CALL, these addresses will be the same, but a DELEGATECALL allows these addresses to
differ.

Impact The execution of a DELEGATECALL, such as during a proxy call, will use the storage of
the bytecode_address instead of the target_address as during normal EVM operations. This
will silently lead to the result of the DELEGATECALL returning incorrectly.

Recommendation Due to the immutability of the revm’s backing database, changes to an
addresses storage during execution will lead to inconsistencies surrounding the set state root of
the DELEGATECALL’s executing evm. Therefore, it does not seem feasible to support the
DELEGATECALL opcode and the Inspector should check to ensure one does not occur.

Developer Response The developers panic in the on_call() function of the Inspector if a
DELEGATECALL is used.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2164

36 Contents

5.1.16 V-VLYR-VUL-016: REVM block number not set for ForgeBlock

Severity Low Commit a763614
Type Logic Error Status Open

File(s) rust/block_header/src/forge.rs

Location(s) fill_block_env()
Confirmed Fix At N/A

The ForgeBlockHeader implements the EvmBlockHeader, which is the trait used by various
components store block headers (such as EvmInput). When building the EVM environment, the
fill_block_env() method of the trait is used to set the environment to be consistent with the
description given in the block. However, the ForgeBlockHeader has an empty implementation
and therefore does not set the environment values such as the block number. This may cause
execution to be incorrect.

Separately, the encode() function for the ForgeBlockHeader does not include the state_root in
the encoding. Given the hash of a ForgeBlockHeader simply returns the default hash, this does
not seem to have meaningful impact.

Impact Execution may be incorrect in regards to the data stored in the ForgeBlockHeader.

Recommendation Set the block number of the REVM execution

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

37 Contents

5.1.17 V-VLYR-VUL-017: Sequencer output silently overwritten

Severity Low Commit a763614
Type Logic Error Status Open

File(s) rust/services/call/optimism/src/client/recording.rs

Location(s) get_output_at_block()
Confirmed Fix At N/A

When populating the recording Client used to record SequencerOutputs of L2s via
get_output_at_block(), it will simply write the value returning from the inner Client to its
cache. Therefore, if there are multiple ExecutionLocations with the same ChainId, then the
SequencerOutput will be silently overwritten. One can see that the factories for cache and
recording clients only have one entry per ChainId.

Additionally, the chain proofs input to the call guest program are of a hashmap indexed by
ChainId. Therefore the guest execution will fail given that one of the instances of the teleport to
the chain will not have access to the correct SequencerOutput and ChainProof.

Impact The SequencerOutput in the recording client will be silently overwritten and lead to
the guest program failing at a later point in the proving pipeline.

Recommendation Fail early during this insertion when the cache is occupied. If multiple time
travels to a destination chain plan to be supported, then refactor parts of the code to index upon
ExecutionLocation instead of ChainId.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

38 Contents

5.1.18 V-VLYR-VUL-018: Travel block silently truncated

Severity Low Commit a763614
Type Data Validation Status Fixed

File(s) rust/services/call/engine/src/travel_call/args.rs

Location(s) u64_from_be_slice()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2265

When processing the inputs to a travel call, the u256 arguments will be converted into u64 via
the u64_from_be_slice function shown below. This function extracts the last 8 bytes from the
input value while it discarding the remainder of the value, truncating the value.

1 fn u64_from_be_slice(slice: &[u8]) -> u64 {

2 u64::from_be_bytes(*slice.last_chunk().expect("invalid u64 slice"))

3 }

Snippet 5.13: Definition of u64_from_be_slice()

Impact The destination of travel calls may be misinterpreted as large numbers can be provided
knowing that they will be truncated. This could be misinterpreted by users who do not know
that the truncation will occur.

Recommendation Check that the discarded bytes were zero bytes.

Developer Response The developers now check that any bytes above the 8 bytes for a u64 are
0 value.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2265

39 Contents

5.1.19 V-VLYR-VUL-019: Potential for man in the middle attack

Severity Low Commit a763614
Type Authentication Status Fixed

File(s) rust/verifiable_dns/src/verifiable_dns/resolver/

responses_validation.rs

Location(s) validate_response()
Confirmed Fix At N/A

To help check the authenticity of an email, vLayer provides a verifiable DNS service in which a
trusted third party perform a request on the user’s behalf and signs the resulting DNS record.
Therefore, as long as the 3rd party is trustworthy (and has not been compromised), the DNS
record should be authentic. DNS Queries, however, are vulnerable to man-in-the-middle attacks
which could allow an external party to compromise the DNS record even if the 3rd party
validator is trusted. To prevent such attacks, the DNSSEC extension was created to ensure
a response came from a trusted server but the DNS validator service does not require that
DNSSEC signatures are checked.

Impact Man-in-the-middle attacks can compromise the authenticity of a DNS record. If this
occurs, emails could be improperly verified as authentic.

Recommendation Consider requiring DNSSEC verification in verifiable_dns or alternatively
allow the user to specify whether DNSSEC should be enforced when verifying an email
proof.

Developer Response The DNS infrastructure of vlayer is out of scope. Additionally, the
module uses DNS-over-HTTPS which should prevent man-in-the-middle attacks.

Updated Veridise Response We acknowledge that this should prevent man-in-the-middle
attacks. We do note this does not prevent DNS cache poisoning attacks, and still suggest that
DNSSEC verification is employed.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

40 Contents

5.1.20 V-VLYR-VUL-020: Values with primary redaction character may be partially
redacted

Severity Low Commit a763614
Type Data Validation Status Fixed

File(s) rust/web_proof/src/redaction.rs

Location(s) validate_name_value_redaction()
Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/2169

vLayer allows information to be proven about HTTP content via a WebProof. As the information
contained in a HTTP request may be sensitive, vLayer allows some information to be redacted
as long as the following restrictions are met as shown in the code below (note that information
is assumed to be organized as key-value pairs):

1. A key may not be redacted
2. A value must be entirely redacted or not redacted at all (i.e. no partial redactions)

To check these properties, the validate_name_value_redaction() function takes as input two
strings where the only difference is the character used to indicate a redaction. Therefore, if the
two strings match then no redaction occurred while if they are different, some content is
redacted. To disallow a partial match, a value is checked to determine if the two string versions
are different (which can occur in a full redaction) and whether one version of the strings is only
the redacted character. A partially redacted string can pass this validation though if the
unredacted content is equal to the redaction character (in this case *).

1 pub(crate) fn validate_name_value_redaction(

2 name_values_with_replacement_primary: &[RedactedTranscriptNameValue],

3 name_values_with_replacement_secondary: &[RedactedTranscriptNameValue],

4 redaction_element_type: RedactionElementType,

5) -> Result<(), ParsingError> {

6 let zipped_pairs = zip(

7 name_values_with_replacement_primary.iter(),

8 name_values_with_replacement_secondary.iter(),

9);

10

11 let redacted_name = zipped_pairs.clone().find(|(l, r)| l.name != r.name);

12

13 if let Some(pair) = redacted_name {

14 return Err(ParsingError::RedactedName(redaction_element_type, pair.0.

to_string()));

15 }

16

17 let partially_redacted_value = zipped_pairs.clone().find(|(l, r)| {

18 !all_match(&l.value, REDACTION_REPLACEMENT_CHAR_PRIMARY as u8) && l.value !=

r.value

19 });

20

21 if let Some(pair) = partially_redacted_value {

22 return Err(ParsingError::PartiallyRedactedValue(

23 redaction_element_type,

24 pair.0.to_string(),

25));

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/2169

41 Contents

26 }

27

28 Ok(())

29 }

Snippet 5.14: Definition of the validate_name_value_redaction function

Impact A user can violate the invariant that information cannot be partially redacted.
Consider the string a*b, one can redact a and b individually while still passing the partial
redaction validation since * is equal to the redaction character. This could potentially cause
redacted values to be misinterpreted as it can collide with realistic content.

Recommendation Assert the content of the secondary value (r) by running the same
!all_match check against the REDACTION_REPLACEMENT_CHAR_SECONDARY.

Proof of Concept The following code demonstrates that a partially redacted value that
contains the REDACTION_REPLACEMENT_CHAR_PRIMARY (*) will still pass validation.

1 #[test]

2 fn veridise_partial_redaction_with_star() {

3 use crate::utils::bytes::replace_bytes;

4 let redact = |x: &[u8], replacement: char| {

5 String::from_utf8(replace_bytes(x, 0, replacement as u8)).unwrap()

6 };

7 let value_with_star = "\0\0*\0*\0";

8

9 let primary_value = redact(value_with_star.as_bytes(),

REDACTION_REPLACEMENT_CHAR_PRIMARY);

10 let secondary_value = redact(value_with_star.as_bytes(),

REDACTION_REPLACEMENT_CHAR_SECONDARY);

11

12 let nvp = vec![("key1".to_owned(), primary_value).into()];

13 let nvs = vec![("key1".to_owned(), secondary_value).into()];

14 assert!(

15 validate_name_value_redaction(&nvp, &nvs, RedactionElementType::RequestHeader).

is_ok()

16);

17 }

Developer Response The developers have added a check on if the r value is !all_matched
against the REDACTION_REPLACEMENT_CHAR_SECONDARY.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

42 Contents

5.1.21 V-VLYR-VUL-021: Primary redaction characters may exist in values

Severity Low Commit a763614
Type Data Validation Status Open

File(s) rust/web_proof/transcript_parser.rs

Location(s) parse_request_and_validate_redaction(),
parse_response_and_validate_redaction()

Confirmed Fix At N/A

Information, such as the URL and http-body, extracted from a WebProof may be redacted to
protect the privacy of the user. To indicate that a piece of information is redacted, the missing
character is replaced by a * when it is returned to the contract. This character can legitimately
occur in the unredacted text, however, which may make it difficult to distinguish between
redacted and unredacted content.

Impact Users may mistakenly interpret redacted information as unredacted or vice versa. For
example, if a url contained the pattern lookup=*, this could indicate that the lookup value was
redacted or possibly that all information was queried.

Recommendation Consider selecting a character that is unlikely (or in the case of a URL
impossible) to occur in text.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

43 Contents

5.1.22 V-VLYR-VUL-022: Two step ownership is preferred

Severity Low Commit a763614
Type Access Control Status Open

File(s) contracts/vlayer/src/Repository.sol

Location(s) Repository
Confirmed Fix At N/A

The transferAdminRole() and transferOwnershipRole() functions utilize Openzeppelin’s
AccessControlEnumerable contract to provide ownership functionality. These functions will
take in a new owner and will then simultaneously revoke the current owner/admin and grant
the new owner/admin the corresponding role.

Snippet from contracts/vlayer/src/Repository.sol

1 function transferAdminRole(address newAdmin) public {

2 grantRole(DEFAULT_ADMIN_ROLE, newAdmin);

3 renounceRole(DEFAULT_ADMIN_ROLE, msg.sender);

4 }

5

6 function transferOwnership(address newOwner) public {

7 address owner = getRoleMember(OWNER_ROLE, 0);

8 revokeRole(OWNER_ROLE, owner);

9 grantRole(OWNER_ROLE, newOwner);

10 }

This is not a safe pattern, as setting the owner or admin to the incorrect address may leave the
contract unable to recover from this mistake.

Impact If an invalid admin is set with transferAdminRole(), then the contract will be left
without an admin. Additionally, if this has occurred and an incorrect transferOwnership() call
was made prior, then the ownership role cannot be recovered and the Registry will become
immutable.

Recommendation Use an ownership structure that requires the receiving owner to confirm
reception of the role, such as Openzeppelin’s Ownable2Step.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

44 Contents

5.1.23 V-VLYR-VUL-023: Lack of SpecID may cause confusion to users

Severity Low Commit a763614
Type Data Validation Status Acknowledged

File(s) rust/services/call/guest/src/guest.rs

Location(s) main()
Confirmed Fix At N/A

The CallAssumptions provided as output of the main travel call circuit provides the ChainID
after a previously mentioned issue (V-VLYR-VUL-001) was fixed. However, the SpecID utilized
is still not provided in the output, and therefore the specific rules utilized by the EVM
regarding the configuration of the chain are not transparent to validators of this structure.

More specifically, if a chain is forked after the deployment of an image, users may assume that
the image will operate on the new fork even if the image is not updated. We recommend
additionally including the SpecID (or a hash of the specId) in the CallAssumptions to make it
clear to users what fork configuration was used in the execution so that potential issues can be
identified early, such as the need to upgrade an image.

Impact By not including the SpecID, in the CallAssumptions, users must have intimate
knowledge of the ImageID to know whether REVM is configured correctly. It is therefore
possible that if a chain is forked after an image is deployed, the image could use an incorrect
fork when executing transactions on said chain. There would be no indication to the user if this
occurs unless they observe changes in the image itself and know information about the REVM
configuration in the image.

Recommendation We would recommend providing the SpecId or a hash of the SpecId in the
CallAssumptions struct which provides assumptions about the execution environment. This
would allow users to compare the SpecID when the image is executed on different blocks to
ensure that a different spec is used on different forks and possibly allow additional validation
logic to be provided on-chain.

Developer Response The developers acknowledge the issue and will not implement the
SpecID in the CallAssumptions. This is due to leading to the requirement of providing
specification validation on-chain, and they rely on the fact that changes in a specification will
require newly generated ImageIDs, which are whitelisted by the team.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

45 Contents

5.1.24 V-VLYR-VUL-024: AnchorStateRegistry reads from a fixed slot

Severity Warning Commit a763614
Type Maintainability Status Open

File(s) rust/services/call/optimism/src/anchor_state_registry.rs

Location(s) get_latest_confirmed_l2_commitment()
Confirmed Fix At N/A

In anchor_state_registry.rs, the OUTPUT_HASH_SLOT and BLOCK_NUMBER_SLOT are hardcoded
constants used to read from the AnchorStateRegistry of a given OP-stack rollup. This registry
stores the latest anchored output root in a mapping that maps a GameType to its anchored state.

However, the main branch on the Optimism repository shows that this will no longer be a valid
way to read the latest anchor root and instead the game that is currently anchored will be stored
in an anchorGame variable.

Impact Once a chain upgrades the implementation of their AnchorStateRegistry, the latest
anchor root cannot be verified in the VM.

Recommendation Be aware of when chains are expected to upgrade, and implement the new
functionality for retrieving the anchor root.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/ethereum-optimism/optimism/blob/develop/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol

46 Contents

5.1.25 V-VLYR-VUL-025: Unexpected JSON path syntax for nested arrays

Severity Warning Commit a763614
Type Maintainability Status Open

File(s) rust/services/call/precompiles/src/json.rs

Location(s) get_value_by_path()
Confirmed Fix At N/A

The JSON precompile implements parsing of a path string in order to traverse a JSON object. As
can be seen below, the path is split on . and each part of the path is assumed to have at most
one array index (as specified by the [] characters

Snippet from rust/services/call/precompiles/src/json.rs

1 fn get_value_by_path<’a>(value: &’a Value, path: &str) -> Option<&’a Value> {

2 path.split(’.’).try_fold(value, |acc, key| {

3 if let Some((key, index)) = key.split_once(’[’).and_then(|(k, rest)| {

4 rest.strip_suffix(’]’)

5 .and_then(|i| i.parse::<usize>().ok().map(|i| (k, i)))

6 }) {

7 if key.is_empty() {

8 acc.get(index)

9 } else {

10 acc.get(key)?.get(index)

11 }

12 } else {

13 acc.get(key)

14 }

15 })

16 }

This leads to unconventional behavior in which nested arrays must be indexed with a dot
between them.

For example, one would expect to be able to access a nested array with a path of
root.veridise[0][1]. However, this syntax requires the array is indexed with a separating dot:
root.veridise[0].[1].

Impact Users of the JSON precompile may not know of this behavior and face troubles
accessing JSON objects.

Recommendation Provide documentation surrounding this behavior, and support nested
array indexing without dots if this is the desired syntax. Additionally, add testing of nested
arrays in the corresponding test module.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

47 Contents

5.1.26 V-VLYR-VUL-026: Database seeding can cause inconsistencies

Severity Warning Commit a763614
Type Data Validation Status Open

File(s) rust/services/call/engine/src/db.rs

Location(s) seed_cache_db_with_trusted_data()
Confirmed Fix At N/A

When building the environments for the EVMs that will be used, the create_env() function
will call seed_cache_db_with_trusted_data(). This will do 2 things with the definitions in
rust/services/call/engine/src/config.rs :

1. Set the AccountInfo of each Address in EMPTY_ACCOUNTS to empty values.
2. Set the storage of accounts defined in ACCOUNT_TO_STORAGE.

Except for the DEFAULT_CALLER, the defined addresses in the config file all relate to specialized
functionality on OP-Stack chains. However, the database of non OP-Stack chains (such as the
base chain, Ethereum), will still get seeded with seed_cache_db_with_trusted_data().
Therefore, the state of the defined accounts do not match with their real state on-chain.

For example, on Ethereum the DEFAULT_CALLER contains ETH in its balance as it is used as a
burn address.

Impact A user can prove execution about the account info of these addresses that is inaccu-
rate.

Recommendation Avoid seeding the OP-stack related accounts for non OP-Stack chains and
consider selecting a random address as the DEFAULT_CALLER as the current address already has
token balances on Ethereum.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://etherscan.io/address/0x11

48 Contents

5.1.27 V-VLYR-VUL-027: General smart contract recommendations

Severity Warning Commit a763614
Type Data Validation Status Partially Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At https://github.com/vlayer-xyz/vlayer/pull/1906

This issue documents some general recommendations around providing a more hardened
configuration than what is currently implemented in order to avoid potential pitfalls for
deployers and callers:

1. contracts/vlayer/src/Verifier.sol:

a) The _setTestVerifier() function appears to be code that should not be deployed in
production in order to prevent changing the verifier in production networks that are
not yet checked for in the ChainIdLibrary.

b) The verifier returned from the ProofVerifierFactory in the constructor should
check that its PROOF_MODE is set to Groth16 for mainnet deployments.

2. contracts/vlayer/src/Seal.sol:

a) The decode() function would be more accurately named encode(), as it encodes the
seal for callers.

3. contracts/vlayer/src/Prover.sol:

a) In the setBlock() function, validate that the caller is traveling backwards. Although
this does not introduce security surrounding the precompile, it would assist honest
provers.

4. contracts/vlayer/src/CallAssumptions.sol:

a) The validateAssumptions() function is currently unused. The ProofVerifierBase

_verifyExecutionEnv() function duplicates the check that is implemented by
validateAssumptions(), alongside additional checks surrounding the
settleBlockNumber. It may be beneficial to move those additional checks into
validateAssumptions() and use said function inside of _verifyExecutionEnv() to
deduplicate code.

5. contracts/vlayer/src/WebProof.sol

a) The recover() function can be directly invoked by users of the WebProofLib,
potentially if they do not have a pattern to test the URL against. This function omits
the public key check implemented in the verify() function. Therefore, even if this
function is unintended to be directly used, it would be beneficial to move the public
key check to recover().

Impact Potential misconfigurations may occur leading to unintended behavior.

Recommendation Implement the recommendations

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://github.com/vlayer-xyz/vlayer/pull/1906

49 Contents

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

50 Contents

5.1.28 V-VLYR-VUL-028: Domain owners can prove arbitrary emails

Severity Warning Commit a763614
Type Access Control Status Open

File(s) rust/email_proof/src/lib.rs

Location(s) parse_and_verify()
Confirmed Fix At N/A

To verify an email proof, one verifies that the public key of the host domain signed the extracted
information of the email. This public key, however, can be used to sign emails regardless of
whether they were sent. As such if a key is compromised or if the host is malicious, signed
emails may not actually have been sent.

Impact Certain applications may want to consider this, especially if they allow senders to
submit emails as the proof may not imply what the application intends.

Recommendation Consider including a warning or best-practices page documenting potential
risks that applications should consider.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

51 Contents

5.1.29 V-VLYR-VUL-029: Proofs may be replayed or frontrun

Severity Warning Commit a763614
Type Frontrunning Status Open

File(s) contracts/vlayer/src/Verifier.sol

Location(s) onlyVerified()
Confirmed Fix At N/A

Applications that interact with ZK proofs need to be aware of two particular issues: replay
attacks and frontrunning. Specifically, a replay attack can occur when a proof may be submitted
multiple times when an application intends accepted proofs to be unique. Frontrunning may
then be an issue if a particular application enforces proof uniqueness as another individual may
frontrun verification to spend the proof first. Oftentimes solutions to the above problems are
unique to the ZK application however and so it is up to those building applications on top of
vLayer to provide their own solutions.

Impact Frontrunning and replay attacks can be used to break invariants that an application
intends to hold. This could potentially have significant impacts on the application itself such as
theft.

Recommendation Consider providing best-practices in the documentation that explains how
these attacks may occur and provide examples of how one can defend against them. For example,
to prevent against a replay attack, a prover may return a nullifier and ensure that the nullifier is
not used upon verification. Frontrunning is often prevented by indicating ownership in a proof
which can be performed here by returning the address of the individual who can spend the
proof.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

52 Contents

5.1.30 V-VLYR-VUL-030: General Rust recommendations

Severity Warning Commit a763614
Type Maintainability Status Open

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

This issue provides general recommendations surrounding the Rust code in order to provide
clarity or ease of usage.

1. rust/mpt/src/node/rlp.rs:

a) This module should be directly tested to ensure the RLP encoding functionality is
correct.

2. rust/mpt/src/node/constructors.rs:

a) branch_with_child_node(): Although this function is only called from an Extension

node, it would be more clear to rename this function to one that signifies this
relationship. Alternatively, the function could check that the child is a branch node
in order to ensure that a leaf is not mistakenly inserted with the incorrect key
nibbles.

3. rust/mpt/src/key_nibbles.rs:

a) split_first(): Out of bounds access can panic, it would be useful to provide a
better error to pinpoint the issue.

4. rust/services/call/guest/src/db/state.rs:

a) The KECCAK_EMPTY constant can be imported from REVM to better ensure the correct
hash is used.

5. rust/services/chain/common/src/lib.rs:

a) fake_proof_result(): Unlike other testing functions in this file that are only
compiled with the testing feature (#[cfg(feature = "testing")]), the function is
missing this decorator.

6. rust/services/call/precompiles/src/regex.rs:

a) validate_regex(): Documentation should be provided surrounding the
requirement that regex patterns must match against a full line.

7. rust/chain/src/fork.rs:

a) partial_cmp(): The comparison between two Forks does not differentiate between a
Block and Timestamp. In the forks specified in the chain_specs.toml file, this is fine
as all Ethereum blocks pre-merge (specified by block number) are less than blocks
post-merge (specified by timestamp). However, this can be fragile and should be
documented for future addition of chains.

8. rust/email_proof/src/dns:

© 2025 Veridise Inc. Veridise Audit Report: vlayer

53 Contents

a) parse_dns_record(): The DKIM RFC *recommends* checking the version field in
the DNS record (in which it must be exactly "DKIM1").

9. rust/email_proof/src/from_header.rs:

a) extract_from_domain(): The email_address.rs file contains the split_email()

function, which should be used instead of reimplementing the functionality in this
function.

10. rust/email_proof/src/email.rs:

a) The validate_email function would be more accurately named
validate_email_address as the function validates an email address rather than the
email itself.

11. ****rust/mpt/src/node/constructors.rs: 1. The branch_with_two_children function takes
as input two nodes MPT nodes that are combined using a MPT branch. If the two nodes
have the same id, however, the second node will overwrite the first node. Consider
validating that first_idx != second_idx in this function rather than the callers to ensure
it is used properly in the future.

Impact Potential misuse or confusions surrounding the mentioned functions may occur.

Recommendation Implement the recommendations.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2025 Veridise Inc. Veridise Audit Report: vlayer

https://datatracker.ietf.org/doc/html/rfc6376#section-3.6.1

Glossary

EVM The Ethereum Virtual Machine (EVM) is a virtual environment designed for smart
contracts that executes code in a deterministic manner . 1

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 1

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more. 54

zkVM A general-purpose zero-knowledge circuit that implements proving the execution of a
virtual machine. This enables general purpose programs to prove their execution to outside
observers, without the manual constraint writing usually associated with zero-knowledge
circuit development . 1

Veridise Audit Report: vlayer © 2025 Veridise Inc.

https://en.wikipedia.org/wiki/Zero-knowledge_proof

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Trust Model
	Operational Assumptions.

	Operational Assumptions.
	Privileged Roles.

	Privileged Roles.
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-VLYR-VUL-001: Missing EVM environment validation allows proof spoofing
	V-VLYR-VUL-002: Missing DNS record validation allows email forgery
	V-VLYR-VUL-003: Inconsistent dependencies allow injection of malicious email bodies
	V-VLYR-VUL-004: SetBlock and SetChain apply to all following transactions
	V-VLYR-VUL-005: Time-travel forward admits arbitrary state
	V-VLYR-VUL-006: Information not included in DKIM signature can be returned
	V-VLYR-VUL-007: Inconsistent metadata access allows access to unsigned information
	V-VLYR-VUL-008: Request transcript redaction can change path and headers
	V-VLYR-VUL-009: Response transcript redaction may silently overwrite data
	V-VLYR-VUL-010: Entries with an empty key incorrectly made as branch nodes
	V-VLYR-VUL-011: Precompile addresses are not unique
	V-VLYR-VUL-012: Email proof validation can be passed during time travel
	V-VLYR-VUL-013: Incorrect From email address can be extracted
	V-VLYR-VUL-014: Email address validation does not match specification
	V-VLYR-VUL-015: Delegate calls use incorrect storage
	V-VLYR-VUL-016: REVM block number not set for ForgeBlock
	V-VLYR-VUL-017: Sequencer output silently overwritten
	V-VLYR-VUL-018: Travel block silently truncated
	V-VLYR-VUL-019: Potential for man in the middle attack
	V-VLYR-VUL-020: Values with primary redaction character may be partially redacted
	V-VLYR-VUL-021: Primary redaction characters may exist in values
	V-VLYR-VUL-022: Two step ownership is preferred
	V-VLYR-VUL-023: Lack of SpecID may cause confusion to users
	V-VLYR-VUL-024: AnchorStateRegistry reads from a fixed slot
	V-VLYR-VUL-025: Unexpected JSON path syntax for nested arrays
	V-VLYR-VUL-026: Database seeding can cause inconsistencies
	V-VLYR-VUL-027: General smart contract recommendations
	V-VLYR-VUL-028: Domain owners can prove arbitrary emails
	V-VLYR-VUL-029: Proofs may be replayed or frontrun
	V-VLYR-VUL-030: General Rust recommendations
	Glossary

